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PREFACE

The work described in this report was performed by the Propulsion

Division of the Jet Propulsion Laboratory.
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ABSTRACT

An externally configured thermionic converter was operated for 200 h.

The converter was disassembled and examined to determine internal changes

as a result of operation. The metal/ceramic seals and all joints were un-

affected by operation. Converter output voltage and operational time were

sufficient to produce electrolysis of stabilized zirconia spacers used in the

converter.

Surface analysis of the electrode surfaces indicated the presence on the

tungsten emitter of only oxygen, carbon, and silicon. The niobium collector

was, however, 25 to 40% covered with other elements. This coverage

represented all elements present within the converter as construction mate-

rials other than silicon and tungsten, which were not detected on the collector,

and carbon, which was detected only in small amounts.
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I. INTRODUCTION

An externally configured thermionic converter is one concept that is

being investigated as a possible thermionic fuel element for an advanced in-

core thermionic reactor. To help evaluate the externally configured concept,

an unfueled thermionic converter was parametrically tested by electrical

heating at the Jet Propulsion Laboratory (JPL). The converter was designed

and fabricated by Thermo Electron Corporation (TECO), Waltham,

Massachusetts, in accordance with JPL specifications and design require-

ments.

During the parametric tests, the static, dynamic, and other opera-

tional characteristics that are unique to this externally configured thermionic

converter were investigated. After termination of parametric testing, the

converter was examined to evaluate any changes in the condition of the

device.

II. EXTERNALLY CONFIGURED CONVERTER DESIGN

A cross section of the converter design is shown in Fig. 1. The

emitting surface of the CVD fluoride tungsten emitter was 1. 143 cm (0. 450

in. ) in diameter by 25. 4 cm (10 in. ) long. The emitter active electrode area
2

was 84 cm . The outer diameter of the tungsten emitter was 2. 03 cm (0. 8 in.)

giving a wall thickness of 0. 44 cm (0. 175 in. ). The active emitting surface

of the emitter was chemically etched for 15 min. with equal volumes of 5%

sodium hydroxide and saturated potassium ferricyanide. The electrical

leads were 0. 1-cm (0. 040-in. ) thick tungsten cylindrical extensions of the

emitter body that were brazed to niobium flanges. The niobium flanges

served as the emitter electrical connections and mechanical supports.

Enclosed within the niobium emitter flanges were alumina spacer rings to

maintain interelectrode spacing.
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The niobium 1%-zirconium collector was 1. 093-cm (0. 430-in. ) outer

diameter by 0. 635-cm (0. 250-in. ) inner diameter. The active collector sur-

face was coated with a few microns of molybdenum that were condensed on

the collector from a molybdenum filament. The collector had three yttria-

stabilized, zirconia cylindrical inserts evenly spaced axially along the col-

lector surface. The insulating zirconia inserts were provided to reduce the

possibility of emitter collector shorts.

A niobium 1%-zirconium flange was welded (at both ends) to the collec-

tor. A copper birdcage was brazed to each niobium collector flange, both of

which served as a flexible, electrical collector lead and mechanical support.

The collector was cooled by water through a variable conductance, 0. 0 14-cm

(0. 007-in. ) gas gap. Trim heaters were attached to the collector leads to

compensate for heat losses. The collector flange and emitter flange were

electrically and thermally separated by a niobium-welded bellows and a

niobium-alumina metal/ceramic seal assembly. This bellows-insulator

assembly was welded to both emitter and collector flanges to seal the cesium

space.

III. CONVERTER ELECTRICAL PARAMETRIC TESTS

The emitter was electrically heated with an RF induction coil. The RF

coil was shaped to compensate for end thermal losses and to flatten the tem-

perature distribution (Ref. 1). Emitter temperatures were determined with

an optical pyrometer, using black body holes in the emitter and surface

brightness measurements.

Static current-voltage curves at nominal temperatures of 1800 K,

1900 K, and 2000 K were determined by TECO (Ref. 2) as an acceptance test

prior to delivery to JPL. The TECO current-voltage curves (with collector

and cesium temperatures optimized) are shown in Fig. 2. The emitter tem-

perature for each current-voltage curve was defined as the maximum ob-

served temperature. The maximum emitter temperature occurred at the

midplane of the converter; axial temperature gradients ranged from a few

degrees to a maximum of 150°C at one end.

After completion of acceptance testing at TECO, the converter was

shipped to JPL. Dynamic and static current-voltage curves were determined
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(Ref. 3). The static current-voltage curves measured at JPL are also

shown in Fig. 2. The maximum converter output power, which was limited

by input power from the RF induction heater, was 178 W (1. 95 W/cm2) at an

emitter temperature of 1946 K. The conversion efficiency was calculated

from calorimetry to be 5. 5%. The converter power output obtained at JPL

at the same temperatures was markedly lower than those obtained by TECO.

The possible causes for this are discussed in Section IV.

The data indicated the importance of emitter temperature flattening on

converter performance. The converter output power was increased 25% when

the temperature distribution was 1860 + 0 -60 K instead of 1860 + 20 - 160 K.

The converter output was slow to respond to changes in cesium pressure and

collector temperature. This suggested a possible contamination of either

the emitter or collector surface and a cause for the low performance.

Plugging of the water coolant line caused premature termination of the

test after 190 h. During the 190 h of operation the converter itself main-

tained its integrity and withstood 46 controlled shutdowns and approximately

13 abrupt shutdowns.

IV. POSTOPERATIONAL EXAMINATION

Attempts to remove the hard water deposits from the converter water

coolant line were unsuccessful The converter was, therefore, disassembled

to determine the cause of the low performance after the initial acceptance

test, which was high performance.

The cause of the low performance became apparent after disassembly.

The zirconia insulators (inserts in the collector) were blackened and cracked

as shown in Fig. 3. The effect is attributed to electrolysis of the zirconia.

Electrolytic characteristics of oxides have been documented in a num-

ber of investigations (Refs. 4, 5, and 6). In the case of Y20
3

- ZrO
2

the

conductivity is attributed to oxygen-ion mobility in the defect solid solution.

The defects are oxygen vacancies created to produce lattice neutrality when

Y+3 ions are substituted for Zr 4 ions in the fluoride-type structure of the

Y 2 0 3 -ZrO 2 solid. solution.
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Y203-ZrO2 specimens have been tested in air at 1673 K with an applied

electrical potential (Ref. 7). In this experiment, up to 3 V were applied to

the test specimen for periods of up to 159 h, producing currents of up to

5 A/cm2 . As electrolysis proceeded, the Zr+4 ions present in the ZrO2

were reduced to the divalent state with the formation of zirconium monoxide

or black zircon (ZrO). In contrast to the starting material, the ZrO had a

much higher electrical conductivity.

Similar electrolysis has been observed in aluminum oxide (A1
2

0 3 ) at

1473 K, however, longer times (5313 h vs 159 h) and higher voltages (100 V

vs < 3 V) were needed to produce damage to the ceramic (Ref. 8).

Literature values for resistivity of zirconia at the collector operating

temperature of 900 K are in the range of 2000 Q2-cm (Refs. 9 and 10). This

results in a resistance of approximately 500 Q2 for each of the zirconia insula-

tor inserts. A diode potential of 1 V would produce a current density of

0. 0025 A/cm2 . This is well below the current density needed to produce

damage in other experiments (Ref. 7) in similar test times. Since the in-

sulators were only in physical contact with the collector and not well-bonded

to the collector, and since thermal conductivity of the insulator is low, it is

probable that outer portions of the insulators were operating at temperatures

much closer to the emitter temperature (up to 2000 K). Thus, they had lower

resistivity and conducted the increased currents needed to produce the

damage observed.

The production of black zirconium-oxide (ZrO) from zirconia (ZrO 2 )

would leave free oxygen to transfer to the niobium collector where it would

produce oxide precipitates and cracking beneath the insulator groove, as

shown in Fig. 4. The inner surface of the collector, which was one of the

helium heat transfer gas gap surfaces, showed reaction layers that were

attributed to impurities in the helium gas (Fig. 5). This is external to the

thermionic conversion surfaces and did not affect converter performance.

The emitting surface was clean and shiny. The only evidence of oper-

ation was a slight texturing of the surface opposite the three zirconia insula-

ting rings. A metallographic section of the emitter surface opposite a

zirconia ring is shown in Fig. 6. This photomicrograph indicates that the

texturing was due to a very slight grain boundary attack.
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Examination of the weld joint between the tungsten emitter and the

niobium flange (Fig. 7), which was back-brazed with vanadium, indicated the

joint to be sound, without any signs of porosity or cracking.

The metal/ceramic seal, in which the alumina was metallized and

copper-brazed to niobium, was in excellent condition and unaffected by con-

verter operation, and is shown in Fig. 8.

Ion scattering spectrometric analyses were run on:

(1) The emitter surface opposite one of the ZrO 2 spacer rings.

(2) The collector surface adjacent to one ZrO 2 spacer ring.

(3) The collector surface beneath one ZrO 2 spacer ring.

The results are shown in Table 1. Ion scattering, spectrometric techniques

provided surface analyses to depths of several monolayers.

Essentially, all impurities have evaporated or sublimed from the

emitter with the exception of silicon, oxygen, and carbon. Both the carbon

and oxygen levels appear to be in excess of that which is in solution at the

operating temperature of the emitter (solubility limits are approximately

10 ppm carbon and 50 ppm oxygen at 1650°C) (Refs. 11 and 12). Neither of

these impurities appear associated with cesium, since cesium concentration

is low on the emitter surface.

Carbon has been observed as a common surface impurity on tungsten

(Refs. 13 and 14). In these vacuum work function tests, the carbon has been

removed by a high temperature (1900 K) exposure to a low partial pressure

of oxygen (7 X 10 - 5 N/m 2 (5 X 10 - 7 torr)). Thus, in the closed system of a

sealed thermionic converter, carbon is not readily removed from the emitter

surface, as it was in the above open-ended pumped vacuum system condi-

tions.

The amount of oxygen present on the emitter indicates that it is present

as an oxide. Tungsten oxides have been identified on both the emitter and

collector surfaces (Ref. 14) in vacuum work function tests. Under the vacuum

work function measurement conditions, these oxides were readily transferred

from the emitter to the collector at normal emitter temperatures. The

analyses of the electrode surfaces indicate the presence of oxygen on both

emitter and collector; however, tungsten was not detected on the collector
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surface. Thus, the results of these analyses indicate that oxygen and carbon

do not transfer as readily from the emitter to the collector as might be pre-

dicted. The prediction is based on free energies of tungsten compounds at

emitter temperatures and free energies of niobium compounds at collector

temperatures. The only element appearing on the emitter surface in greater

amounts than on the collector was silicon. Because of the high solubility of

silicon in tungsten (-5 wt% at emitter temperatures) (Ref. 15), all of the

detected silicon is believed to be in solution.

The collector analyses appear to be a scan of the periodic table with

practically all elements, which were present in the converter, present as

impurities on the collector surface. The surface was estimated to be 25 to

40% covered with contaminants, with the remaining 60 to 75% being niobium.

The most unexpected result of the collector analysis was the absence of

tungsten and the small concentration of carbon on the collector surface. It

must be kept in mind that the total operating time of the thermionic converter

was 200 h. Thus, transfer of tungsten and carbon from the emitter to the

collector may occur at longer times, but transfer is definitely not rapid.

The high carbon concentration beneath the ZrO2 insulator suggests contami-

nation during machining or during installation of the ZrO2 insulators into the

collector subassembly. The high rhenium concentration, coupled with ZrO 2

resistivity degradation, suggests that the ZrO 2 spacer rings were heated by

current flowing through the rhenium wires through the ZrO2 to the niobium

collector. The rhenium wires were used to hold the ZrO2 in the collector

slots and to prevent direct contact between ZrO2 spacer rings and emitter.

Scans at greater depths into the converter surface indicated that alumi-

nium disappeared at approximately 40 monolayers, indicating it to be from

the alumina insulators rather than the niobium impurity. Fluorine was de-

tected in the fluoride-vapor-deposited tungsten emitter, but it was very

erratic. This indicates the fluorine to be present in bubbles rather than as

a continuous dispersion.

V. SUMMARY AND CONCLUSIONS

Approximately 200 h of operation of the thermionic converter was suffi-

cient to produce electrolysis of the zirconia insulator spacer rings, which

reduced the electrical output of the converter, both by electrical shorting
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and contamination of the collector surface. Surface analyses of the electrode

surfaces indicated that only carbon, oxygen, and silicon remained on the

tungsten emitter surface in significant amounts. The niobium collector sur-

face was 25 to 40% covered with other elements transferred from other por-

tions of the converter. These elements are all present within the converter,

with three significant exceptions: tungsten and silicon, which were not de-

tected on the collector, and carbon, which was present on the collector in

amounts far below levels present on the emitter.
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Table 1. Ion scattering spectrometric surface analysis results

Approximate concentrations

Element
Collector beneathEmitter Collector surface Collector beneath

spacer

Tungsten Large N. D. N. D.

Rhenium Low Large Medium

Cesium Low Large Large

Oxygen Large Large Large

Carbon Medium Low Medium/large

Aluminum N. D. Large Medium

Copper N. D. Medium N. D.

Nickel Low Medium Medium

Silicon Medium N. D. N. D.

Titanium N. D. Medium N. D.

Vanadium N. D. Medium N. D.

Zirconium Low Medium Medium

aN. D. = not detected < - 1%

Low = 1% range

Medium = 3-5% range

Large = > - 5%
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